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COUPLED AMPLIFIER MODULE FEED NETWORKS
FOR PHASED ARRAY ANTENNAS

INTRODUCTION AND SUMMARY OF RESULTS

The high cost of phased-array antennas prevents their use in many applications where electronic
scanning could provide large performance improvements relative to mechanically scanned antennas.
One reason for the high cost of conventional phased-arrays is their parallel construction: each radiating
element has its own phase control. Previous approaches to reducing system cost by even modest reduc-
tions in the number of phase-shifters result in objectionable increases in sidelobe levels [1]. Although
the feed networks discussed in this report allow for greatly reduced numbers of phase-shifters, there are
other components that must be added. Thus the cost-effectiveness of the new approach is an issue for
further study.

Figure 1 depicts a linear array corporate feed, illustrating the one phase-shifter/element require-
ment that characterizes conventional design [2]. Figure 2 shows the functionally equivalent coupled
amplifier module (CAM) feed. Phase control is provided only at the edges of the CAM feed, and
requires just one phase shifter. As shown in Fig. 3, each module in the CAM feed consists of a hard-
limited amplifier whose input is the sum of sampled outputs from the two adjacent modules.

Fig. I - Four-element linear array employing conventional
hybrid junction corporate feed (3 phase-shifters)

PHASE SHIFTERS

HYBRID JUNCTION
CORPORATE FEED

Fig. 2 - Four-element linear array employing coupled amplifier module feed

Manuscript approved November 8, 1982.
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Fig. 3 -Amplifier/limiter module for
coupled amplifier module feed

Since the outputs of the amplifier/limiter modules are all of unit amplitude, all information is
contained in their phases, 0,(T), where n is the module index and T is the time. It is shown that the

dynamics of the CAM network are governed by a simple diffusion equation on the phases 0n (T)

The main body of this report is devoted to developing solutions to the phase diffusion equation.

Consideration is given to:

* steady-state phase distributions for fabricationally perfect modules, i.e., modules for which the
power dividers effect exactly equal two-way power division;

* the complete transient phase distribution for perfect modules; and

* steady-state phase distributions for fabricationally imperfect modules, including those for which
the imperfection can only be characterized statistically.

The phase diffusion equation can be solved exactly when the modules are fabricationally perfect,
with the following results.

* While the CAM network establishes a linear phase progression in the steady state, the phase

difference between the outputs of adjacent modules is limited to the interval [O0 , 900). If the
phase gradient were ever to reach 900 per module, the signals summed at the input to the hard-
limited amplifier would be 1800 out of phase and therefore would add to zero. Since it is thus

impossible to develop phase gradients greater than ±+900 per module, two modules/element are
required to achieve full hemispheric scanning capability (cf. Fig. 2). (Only one module per ele-

ment may be required for limited scan applications, however.)

* The exact transient response takes the form of a modal expansion in which each of the spatial
modes has a characteristic decay time. Since the transient response is dominated by the spatial

2
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mode having the slowest decay time, a simple and highly accurate one-mode-approximation
results.

* The settling time of the CAM network increases as the square of the number of modules. Thus,
satisfaction of bandwidth requirements may necessitate introducing additional "speed-up" phase
shifters spaced at regular intervals along the feed network.

The analysis for fabricationally imperfect modules permits only approximate solutions for the
steady-state phase distributions. Defining the phase gradient error as the difference between the actual
phase gradient and the ideal constant gradient, an expression is developed for the phase gradient error
for arbitrarily nonuniform CAM structures. Assuming that the nonuniformities from one module to
the next are independent, equal-variance random variables, an expression for the root-mean-square
(RMS) phase gradient error is then derived. It follows from this analysis that the RMS phase gradient
error increases as the square root of the number of modules in the CAM network; also, the error is
proportional to tan AO, where AO is the nominal phase increment per module. An example is given
for a 9-module feed for which a 1% RMS error in the power splits gives rise to about a 10 RMS phase
gradient error, for an assumed nominal phase gradient of 450 per module.

Finally, it is shown that the CAM technique can be applied to 2-D antenna arrays. The CAM
feed network for a 2-D rectangular array of arbitrary size requires just three phase-shifters.

In most practical antennas the amplifier/limiter modules feeding the radiating elements would be
followed by power RF amplifiers. In receive mode, the coupled module structure would be used as a
local oscillator chain to convert the antenna outputs to intermediate frequency (IF).

MODEL FORMULATION

Figure 4 shows an idealized model for the individual amplifier/limiter modules. The principal
idealization is in representing the hard limiter as a time-variable amplifier whose gain N"(T) automati-
cally adjusts itself to provide a unit amplitude output, i.e.,

x0 (T) = exp jo,(r), (I)

where n is the module index, and the normalized time r is defined as

= (tIT),
where Tis the delay time per module (cf. Fig. 4). The gain N (,) is a function of time and is generally
different from one module to the next,

N"(r) • Nm&(), n •f m. (2)

We preserve sinusoidal waveforms by implicitly assuming that the hard limiter in Fig. 3 is followed by a
high-Q tuned circuit.

The gains B,_ 1 and F"+1 in Fig. 4 are determined from the power splits effected by the two power
dividers in Fig. 3 and are respectively referred to as the backward- and forward-coupling coefficients.
We generally design the power splitters to achieve the ideal,

B,= F,1 (3)

Departures from the ideal are unfortunately inevitable due to fabricational imperfections in the power
splitters.

From Figs. 2 and 4,

x,,(T + 1) = Nt(T)[Bx"+ 16(T) + Fnx,,..1(T)].

3
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Fig. 4 - Idealized model of amplifier/limiter
module depicted in Fig. 3

Thus, from Eq. (1),

e( + N1) =N(T)[Bnej°n+l(7) + FneJn ] (4)

where n = 1, 2, ... (M - 1). Solution of Eq. (4) generally requires the specification of boundary
phases at n = 0 and n =M,

Oo(T) = 0 (5a)

OMM = MA0o-r 21r , T< O
0M6-) |1Ok= MAX0 - s 2T, r >,O (b)

and the initial phases

(r) =Oi, n =1, 2, ... M, T< O. (6)

The terms r -
21r and s - 2Tf appearing in Eq. (Sb), where r and s are integers, reflect the fact that the

phase difference (OM - 0o) established by the phase-shifter (cf. Fig. 2) is physically determinate only to
within an integral multiple of 2Tf. Also, we note that the number of modules in the feed network is
equal to (M - 1). (For example, M = 6 for the network depicted in Fig. 2.)

For future use we define the quantity aM(0) as the step change in boundary phasing imposed by
the phase-shifter at T = 0,

aM(0) = mod2 r(Ok - OM) = M(Aq - A00). (7)

The function mod2 v, (-) appearing in Eq. (7) expresses its argument in modulo - 27r, i.e., as a number
between 0 and 2 7r.

4
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THE PHASE DIFFUSION EQUATION

It is shown in Appendix A that Eq. (4) can be recast as

0n(T + 1) -- en tan I [0f+o(T) - on-I(T) (8)
=2 + ,~()-etn2-

which we refer to as the phase diffusion equation. The parameter en provides a measure of fabrica-
tional imperfection, being defined as

2 |fn -+B (9)

Equation (8) is derived in Appendix A subject to the assumption that

1 en tan I[On+ 16() - I(T)] << 1. (10)

Thus, Eq. (8) is only approximately correct when en •f 0; however, the simpler, less general equation
that results when en = 0 is exactly equivalent to Eq. (4) when F. = Bn.

EQUILIBRIUM PHASE DISTRIBUTIONS

Analysis

Equilibrium solutions of Eq. (8) are obtained by recognizing that

lim On(r + 1) = lim On(T) - n, (11)

the final equality being a convenient notational convention. With the additional definition

4 0n 0, - O,1,- (12)

it follows from Eqs. (8) and (11) that in the infinite-time limit

40n+l = 40n + en tan 2 (400n+ + AGn). (13)

If we are to have a uniform phase gradient,

AGn = A4n+1 = constant, (14)

it follows from Eqs. (9) and (13) that we must have equal forward and backward coupling,

F.= Bn, (15)

i.e., en = 0. Feed networks for which Eq. (15) obtains are referred to as "fabricationally perfect." If Fn
;• Bn, i.e., if en •d 0, for one or more values of n, the network is referred to as "fabricationally imper-
fect."

From Eqs. (5) and (12),
ni 40m, (On 0 0 ) =On, (16)

m=I

and

z AOm (OM - o0) MAO - s * 27r, (17)
m=I

S
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where s is an integer. The term s * 27r appearing in Eq. (17) reflects the fact that the phase difference
(OM - G0 ) established by the phase shifter (cf. Fig. 2) is physically determinate only to within an
integer multiple of 27r.

From Eq. (14),

AO,, = nAG0n, n = 1, 2, ... M (18)
m=1

The equilibrium phase distribution for fabricationally perfect CAM networks follows from Eqs.
(16), (17), and (18).

AH"(O) = tv¢- (s * 21r/M)1
GOn(-) = nAO,(oo) J n = 1, 2, ... M, (19)

where s is an integer.

To complete the specification of the physical problem, and to provide necessary information for
calculating the indeterminate integer s appearing in Eq. (19), we must specify values for the initial
phase distribution, Eq. (6). Assuming that the network is initially in an equilibrium state we may write

o0n(T) = on = nAO0 , n =1, 2, ... M, < 0. (20)

For initial conditions and boundary conditions specified by Eqs. (20) and (5), respectively, it has
been found by computer simulation that the only values of s ever to occur are s = 0 and s = 1.

Figure 5 shows the initial phase distribution, Eq. (20), and the two possible final phase distribu-
tions (Eq. (19) with s = 0 and s = 1). We now summarize some results from Appendix B addressing
the question of which of these two final phase distributions is ultimately established.

For positively coupled lattices, F > 0,

10, 0 < aM( 0 ) < (wT -2A00)

s | , otherwise. (21)

For negatively coupled modules, F < 0,

lo, 0 ( aM(O) < (3ir - 2Ao)

S 5=|1, otherwise. (22)

We recall that the quantity aM(O) appearing in Eqs. (21) and (22) was defined in Eq. (7) as the step
change in boundary phasing imposed by the phase-shifter at time T = 0.

To summarize, the equilibrium phase distribution G, (or AO,) is calculated subject to two assump-
tions:

* We assume that the network is initially in an equilibrium state characterized by the initial phase
gradient AGn (,r) = A00 , T < 0.

* We assume that the setting of the phase control in Fig. 2 is changed by an amount
mod2, (O - 0 m) = ceM(O), having a value between 0 and 2 7r.

6
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Fig. 5 - Phase distributions for an 8-module linear lattice (M = 9).
The initial phase distribution of has a phase gradient of A00 per
module. The initial distribution evolves into one of two possible final
distributions, Of, referred to as the s = 0 and s = 1 equilibrium
phase distributions. The s = 0 distribution is established if 0 <

mod2r (0j - 0 < (7r - 2A00).

The network will settle into a new equilibrium phase distribution that can be calculated as follows.

* The value of s is computed from Eq. (21) if F > 0 or from Eq. (22) if F < 0.

* The quantity AO is computed from the equation

AO = A 00 + [aM(0)/MI. (23)

Since aM(O) is always positive by definition (cf. Eq. (7)), Eq. (23) ensures that AO > A 0 ,
always.

* The values for AO and s are substituted into Eq. (19) to obtain the new equilibrium phase distri-
bution.

Appendix B provides expanded discussion of the equilibrium phase distributions.

Phasing Limitations and an Alternative Module Structure

Inspection of Fig. 5 shows that development of the s = 0 phase distribution corresponds to the
evolution of a larger phase gradient than existed initially,

AGn > Ai0 , S = 0. (24)

7
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It follows from Eqs. (21) and (24) that

teM(O) < (Or - 2AOO),

from which, together with Eqs. (19) and (7), we can show that

(AO, - AlO) < (Xr- 2fOO)/M.

(25)

(26)

Equation (26) indicates that the achievable increment in phase gradient becomes ever smaller as the
initial gradient approaches 90° per module. Thus, phase gradients IAO, I > 900 per module are unattain-
able with positively coupled lattices (F > 0). Similarly, we find that phase gradients 0 < IAO, I < 90° per
module are unattainable for CAM lattices with negative coupling (F < 0). Appendix B provides a
more detailed discussion of the phasing limitations.

One method of achieving full hemispheric scanning capability (up to ±+180° phase differential
between antenna elements) is to allocate two modules per radiating element (cf. Fig. 2). Alternatively,
only one module per antenna need be used if the module is designed as shown in Fig. 6. As compared
with the original Fig. 3 module, the Fig. 6 module incorporates a 1800 I-bit phase-shifter. The
modified CAM network is made to simulate the original network for small phase gradients, 0 < AO <
90° per module, by setting all 1-bit phase-shifters to their 00 -state. Scanning at large angles, requiring
900 < AGn < 1800 per module, is achieved by setting all 1-bit phase-shifters to their 180'-state
(corresponding to negative coupling, F < 0). Thus, utilizing the Fig. 6 module rather than the Fig. 3
module we may replace all nonradiating terminations in Fig. 2 with radiating elements and still retain
full hemispheric scan. Of course, the expense saved in halving the number of modules may be more
than completely offset by the increased cost per module.

OUTPUT

f

POWER DIVIDER

* - SHIFTER

COUPLER

HARD LIMITER

AMPLIFIER

POWER COMBINER

L_

Fig. 6 - Amplifier/limiter module incorporating 1-bit 180° phase-shifter,
permitting full hemispheric scan with just one module per radiating ele-
ment

8



NRL REPORT 8492

TRANSIENT PHASE DISTRIBUTION AND SETTLING TIME

We presently assume that the CAM lattice is fabricationally perfect, i.e., that Eq. (15) obtains for
all values of n. It follows from Eqs. (8), (9), and (15) that

G, (T + 1) = I [G +.(,) + Gn -l(T)]. (27)
2

Equation (27) is solved in Appendix C by the separation of variables method. The exact solution is

IM/21 1~ i (krM
G, (T) = G,,(o) + 2[G,,(o)- o A 20 ] (-I)k| sin (nk/M) ] [cos (kiT/M)]V+', (28)

k-t sin (kW M 

where [M/21 denotes the integer part of (M/2), quantity AGn(oo) is the equilibrium phase distribution,
Eq. (19), and

711 + (-I)n+t+A1 = i, (n+T+M)vodd (29)

The factor [AGO, () - A00] appearing in Eq. (28) may be calculated from Eqs. (19) and (23) as

[AO"(-o) - A40 J = [aM(O) - s2irl/M, (30)

where aM(0) is the step-change in edge phasing, as defined by Eq. (7), and s is given by Eq. (21) if
F > 0 or Eq. (22) if F < 0.

Values of Gn(r) calculated from Eq. (28) have been compared with the results of iterative numer-
ical solutions of Eq. (4). The exact equality of on values calculated by these two totally different
methods is taken as a validation of Eq. (28).

In the limit (kWrIM) < < 1, valid for small k,

[cos (kWr/M)]7 J e&7/Tk (31)

where the time constants Tk are given by

Tk 1 (M/k) 2 . (32)

It follows from Eqs. (31) and (32) that the k > 2 terms in Eq. (28) decay much more rapidly with time
than does the k = I term. Thus, we expect the long-time behavior of the phase distribution to be
dominated by the k = 1 term,

Hn(T) =,,(0) -2[AO, (00) - A0I [sin (n( iM) 1e e7"'/T (33)
sin (irim)I

where ,u is again given by Eq. (29), and the settling time r, is defined as

-l = M2 /5- (34)

A simple single-mode approximation also may be obtained for the phase gradient AG,,, Eq. (12),

Abn (T) = An() - 2[AOn(oo) - At0k cos [(n + /A - 1)it/M]e 5. (35)

The single mode approximations, Eq. (33) and (35), are highly accurate for

T > Tr.

We have compared the approximate solution, Eq. (35), with the complete analytic solution
obtained from Eq. (28) and with iterative computer solutions of Eq. (4). The sample calculations
presented below assume that

9
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(M, Aqo, aM(O)) = (9, 60°, 450). (36)

That is, we assume an 8-module feed initially in an equilibrium state described by Eq. (20) with a uni-
form phase gradient of 60° per module. We further assume that the equilibrium prevailing for T < 0 is

disturbed at T = 0 by step-increasing the phase control in Fig. 2 by a9 (O) = 450. We find from Eqs.
(21) and (23) that the network will eventually settle into a new equilibrium phase distribution given by
Eq. (19) with

AG,,(oo) = Ad = 650. (37)

For this calculation (and all other calculations) the numerical solution was in exact agreement
with Eq. (28).

Figure 7 shows the phase distribution as a function of module index n at two values of time
(T= 32 and T = 48), for the specified parameter values, Eq. (36). Approximation AG, is indistinguish-
able from the exact solution on the scale of Fig. 7.

Aen (T)

660 

r 2 r.32 :r=3r3=48

Fig. 7 - Phase distribution for an 8-module feed at two
values of time (T = 32 and x= 48). Assumed parameter n
values were (M, Aq0, aM(O)) = (9, 60°, 45°). In the 65° 1 1 1 1 1 1 |

infinite-time limit a uniform phase gradient is established, 1 2 3 4 5 6 7 8 9
AOn(-o) = AO = 650.

640

Figure 8 depicts the transient development of AO1 (T) obtained by the exact methods of solution.
Figure 9 shows the difference between the exact and approximate solutions for AG I(T) as a function of
time. We see from Fig. 9 that the error incurred in using Eq. (35), rather than the complete solution,
is less than 0.13° for T > rs = 16.

MODULES WITH FABRICATIONAL IMPERFECTIONS

Approximate Formulation for the Equilibrium Phase Distribution

Up to this point in our analysis we assume that all components in the CAM network, Fig. 2, can
be fabricated to arbitrarily precise specifications. In particular, we assume that the power splitters have
been fabricated to achieve perfectly equal forward and backward coupling, Eq. (15). It is of some
interest to quantify how component imperfections degrade the phasing accuracy of the CAM network.

10
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63'

62'

61'

AG, (r)

r
60 s0

( r/i1 )
l I I I I I I-
0 1 2 3 4 5

Fig. 8 - Transient development of AHI(6) for the same
parameter values as Fig. 7. Values at T = 

2
TS (point A)

and 7 = 
3

Ts (point B) correspond to points A and B in Fig.
7. Values given can be obtained from either of the two
exact methods of solution: the complete analytical solution,
Eq. (28), or by numerical solution of Eq. (4).

A
AG-_AG1

c:
2!
r-

0.1

rai

C.

0.02°1 l l l 
0 10 20 30

Fig. 9 - Values plotted are the difference
between the exact value of AO1 (Fig. 8) and the
approximate value AG1 obtained from Eq. (35).
Error incurred in using Ab 1 is less than 0.13° for

T > 
Ts

We presently relax Eq. (15) somewhat, assuming instead that

0 < I E,,i << 1, (38)

for at least one value of n (cf. Eq. (9)). Our interest is in obtaining the solution of Eq. (13). We have
shown previously that when e,, = 0, n = 1, 2, ... (M - 1), the equilibrium phase distribution is a
uniform phase gradient, as desired,

A0X(oo) = A00 + [aM(O) - s * 27r]/M, (39)

or, equivalently,

A0°(oo) = AO -s(2ir/M). (40)

The superscript 0 on AOn(oo) serves as a reminder that Eqs. (39) and (40) are derived subject to the
assumption that en = 0. We now define a new quantity A/,, that measures the degree to which the

actual phase gradient AGn departs from the ideal, i.e.,

Akn = AOn(oo) - AOn(o), (41)

with AO,?(oo) given by Eq. (39).

11
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Appendix D shows that Eq. (13) has the approximate solution

-1 I M M
AO" =-- i r Epr 4 tan AO'(-o), n = 1, 2, ... M. (42)

In the remainder of this section we assume that s = 0, allowing us to replace AOn(oo) by Ak in Eq.
(42).

Feeds with Identical Imperfect Modules

If all the modules in the CAM network are identical, even though they are imperfect, we have

6 , = 6, (43)
independent of the module index n. Subject to Eq. (43), Eq. (42) becomes (cf. Eq. (D26))

Ak4 [n - (M + 1)/21 tan AO, n = 1, 2, ... M, (44)

where = 2(F- B)/(F + B).

In Fig. 10 we present values predicted by a computer solution of Eq. (4), for the parameter values

(E, AO, M) = (10-2, 65°0 9). (45)

We observe from Fig. 11 that Eq. (44) agrees fairly well with the numerical solution. In Appendix D
we calculate a second-order correction to Eq. (44) that results in an even closer fit to the numerical
solution.

&#n

4.

1 2 3 4 5 6 7 8 9
OD~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

040

Fig. 10 - Equilibrium phase error for an 8-module feed with identical
imperfect modules, obtained by numerical solution of Eq. (4). Parameter
values assumed are (E, AO, M) = (0.01, 65°, 9).

12
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An -64n

-0.2 -

-0.4 -

Fig. 11- Difference between exact value of AO,,, as given in Fig. 10, and
value of AO,, obtained by two approximate formulations. The first-order
approximation AO'() is given by Eq. (44); the second-order approximation
A+ 2) is given by Eq. (D41).

We note from Fig. 10 that the phase increment per module AO,, varies from a minimum of

G1I = (A+O1 + A+) - 60°,
to a maximum of

AOM = (AOM + A4) 700,

across the network. Thus, a systematic imperfection of 1% in the power split ratio gives rise to a phase
inaccuracy of ±5°. However, smaller phase errors are obtained for smaller phase gradients, AO < 650,
due to the tan AO factor in Eq. (44).

Defining a mean-square phase error as

^+2ms=M (AX )2, (46)
A~~rms = -,, IMn=1

it follows from Eq. (44) that (in radians)

1 1/2
Aorms= E tan AO 12 M. (47)

For our previous example, Eq. (45), we calculate

Atkrms = 3.2 0. (48)

Random Imperfections

Rather than take e, as a known function of n (e.g., Eq. (43)) we now assume that the coupling
coefficients Fn and B,, are independent, identically distributed random variables. The quantities e, are
thus also independent and identically distributed,

02, p = k'(49)w r-it sic ee t operator.

where EH is the statistical expectation operator.

13
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We show in Appendix E that the following approximate relationship obtains between the statistics
of e and those of F,

0= X I0-' A, (50)

where A is the percentage fabricational error,

A = 100(oF/sF) (51)
The quantity o-, in Eq. (50) is the standard deviation of e,; quantities 0 F and /1 F in Eq. (51) are the
standard deviation of F, and the mean value of Fr, respectively.

The variance of the phase error is defined as

O'2 (A - (52)2n = -E( +2 [E(,&O,)] (52)

It is shown in Appendix D from Eqs. (42), (49), and (52) that (in radians)
I 1 1/2

a-,, - o- tan At 1-I | M12{ 1 + 12M 2[n - (M + 1)/2]231/2. (53)

Equation (53) displays the expected symmetry about n = (M + 1)/2. The minimum value of an is
obtained at the center of the array; from Eq. (53)

amin = min a-,, a- tan AOy |- M/ 2 . (54)

Equation (54) bears an interesting resemblance to Eq. (47); however, it should be remembered that
.A 4

irms was defined on the basis of a spatial average, Eq. (46), while the values of a-,, n = 1, 2, ... M,
are established as ensemble coverages over the statistics of F,

From Eqs. (50), (51) and (53) we obtain (in degrees)
( 1~~~~~~~~~~~1/2

a,, = 0.234 A tan AO M 112 I + 12M2 [n- (M + 1)/2]2J , n = 1, 2, ... M (55)

We find from Eq. (55) that the RMS phase error is minimum at the center of the array,

a-min = 0.234 A tan AO M"12 , degrees, (56)

and maximum at the edges of the array

a-max 2(1 - 0.75M-')amin- (57)

We find from Eqs. (56) and (57) that when

(A, M, AO) = (1%, 9, 450)

the minimum and maximum RMS phase errors are

a-mn = Cr5 = 0.70,
and

a-max = aj = 9 = 1.29°.
Thus, a 1% RMS error in the power splits gives rise to about a 1° RMS phase gradient error.

MODULES WITH SELF-COUPLING

Our analysis thus far assumes that the coupled module lattice comprises of amplifier/limiter
modules each configured as shown in Fig. 3. However, alternative module structures are conceivable,
such as that depicted in Fig. 12. Comparison of Fig. 12 with Fig. 3 shows that the only difference
between the two structures is the presence of a self-coupling path in Fig. 12.

14
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Xn

Fig. 12- Amplifier/limiter module with self-coupling

A transient analysis of CAM lattices composed of self-coupled modules is given in Appendix F.
It turns out that the self-coupled module, Fig. 12, has less desirable performance characteristics than
the simpler module analyzed previously.

In brief, we find in Appendix F that (cf. Eq. (F34))

[AO,,(T) - AO,,()]ae t1T (58)
for self-coupled modules, Fig. 12. The settling time T, in Eq. (58) is given by

Ts sI + IF-' sec AO (59)

where T, = M2 /5 is the settling time for modules without self-coupling, Eq. (34). Stable equilibrium
phase distributions exist only for 0 < AO < 7r/2 when F > 0; stable distributions exist only for 7r/2 <
AO < 7r when F < 0. It follows from Eq. (59) that

Ts > Tsw (60)

always, i.e., modules without self-coupling settle faster than modules with self-coupling.

Figure 13 depicts the transient development of AOI(T) obtained by means of the theory developed
in Appendix F, for the same parameter values as Figs. 7 and 8. Comparison between Figs. 13 and 8
shows that the phase distribution for self-coupled modules evolves more slowly with time and is tem-
porally smoother than the phase distribution of modules that lack self-coupling.

According to Eq. (59),

* settling is faster for strong coupling (large F) than for weak coupling (small X. However, settling
time cannot be decreased indefinitely by increasing F; once Fcos AO >> I further increases in F
provide no further improvement. We find that

15
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Fig. 13 - Transient development of AO,(T) for a self-coupled CAM
lattice. Assumed parameter values are (M, AO0 , aM(O)) = (9, 600,

l / 45°), for all curves. Strong coupling, F = 10, results in faster settling
| l/ than unity coupling, F = 1. Solid curves obtained by numerical solu-

tion of Eq. (Fl); dashed curves obtained by one-mode approxima-
64 - tion, Eq. (F34). Solid and dashed curves for F= 10 are too close to

M 7 distinguish on this plot.

I

0 100 200

lim T, = Ts, (61)
F-mo

i.e., we can do no better than the settling time obtainable by eliminating the self-coupling. Also,

* settling time becomes progressively longer, approaching infinity, as AX approaches 900.

The longer settling time, Eq. (60), and the dependence of settling time on phasing, Eq. (59), are
undesirable attributes that lead us to favor modules without self-coupling over modules with self-
coupling.

TWO-DIMENSIONAL ARRAYS

We now briefly discuss how our results for l-D CAM lattices can be extended to 2-D structures,
appropriate as feeds for 2-D phased arrays.

We adopt an abbreviated convention for depicting CAM lattices, as illustrated in Fig. 14 for the
previously analyzed l-D structure. The empty circles in Fig. 14 denote amplifier/limiter modules ter:
minated by antennas; filled circles denote modules with nonradiating terminations. Thus, Fig. 14 is
equivalent to Fig. 2.

exp jo ex P J 3AO

Fig. 14 - One-dimensional CAM lattice. Empty circles denote
amplifier/limiter modules terminated by an antenna; filled circles denote
modules with nonradiating terminations. This figure is equivalent to Fig.
2.

16
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Figure 15 is a 2-D generalization of Fig. 14. Based on results already given, it is easily shown that
the equilibrium phase distribution of the Fig. 15 lattice is the desired 2-D linear phase gradient. We
can see by inspection that the settling time for the 2-D square lattice must satisfy the constraint

whe(r-D) < Te(2-D) < 2Ts(I-D)

where

Ir (I-D) = M2/5 is the settling time of l-D edge lattice,

and

Ts (2-D) is the settling time of 2-D lattice.

exp J2A*, A&y )

OXP Jo exP 12A*x

Fig. 15 - Two-dimensional CAM lattice suitable for excit-
ing a 2-D phased-array. While only three phase-shifters are
required to excite a rectangular structure of arbitrary size,
settling time increases as the square of the largest linear
dimension of the lattice. Thus, additional phase-shifters
may be required to satisfy bandwidth requirements.
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Appendix A
THE PHASE DIFFUSION EQUATION

Taking the imaginary part of Eq. (4) we obtain
sin Hn(T + 1) = Nn(T) - S, (T), (Al)

where, by definition,

S,(T) = B, sin O,+ I(T) + F, sin O,,L(T) (A2)

Equation (A2) may be rearranged to obtain,

Sn,(T) = 2 (Bn + FJ)(sin 0,,+l + sin ,,'-l) + 2 (Bn - Fn)(sin ,,j+ - sin On-l). (A3)

Applying some standard trigonometric identities to Eq. (A3),

Sn (T) = COS I (0n+ + n-1)coS I (O +1 On-d)2 n. 1 2 n+ 1

{(Bn + FJ) tan I (0n+1 + On-d) + (Bn- F) tan I (n+1 On-d,)} (A4)

Similarly, taking the real part of Eq. (4) we obtain

COS O,,(& + 1) = Nn () * C, (T), (AS)

where, by definition,

Cn(,) = Bn coS On+1(T) + F, cos On,10(r). (A6)

Equation (A6) can be recast as

1 1 (n1-O -
Cn (T) = COS 2 (O1n+1 + On-d) COS 2 ( -

1(Bn + F.) - (Bn - F,) tan I (0n+1 + O,-d) tan 2 (0+ -On'l)). (A7)

Dividing Eq. (Al) by Eq. (A5), and substituting Eqs. (A4) and (A7) for Sn,() and C,(T),

tan I (0n+1 + Oln)- -I En tan I (0-+l- O-)
tan o, (T + 1) = 2 t (A8)

I+2 en tan 2 20+-"l tn(0n+1 + n"-d

where

fn-2 F. B,, (A)

We see immediately from Eq. (A8) that, for F, = B,,

O,,(T + 1) = I [,,+I(T) + On-,I,(T) , En = 0. (A10)
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Subtracting O(,r) from each side of Eq. (A10),

[0,,(T + 1) - 0,(T)] = [09 +1 (T) - 20,,(T) + O,,(T)]. (All)

Equation (All) has the form of a one-dimensional heat flow equation in which the time and space
derivatives have been replaced by finite differences. We refer to Eq. (All) as the phase diffusion equa-
tion for perfect modules, i.e., modules for which e, = 0.

More generally, further simplification of Eq. (A8) when en, • 0 requires that we assume

I en tan I (Hn~l- O,,) << 1, (A12)
2 2

so that

I 6, tan I (0"+O - O,,"l) - tan| I C, tan I (O.+,-Hil)J. (A13)

It follows from Eqs. (A8), (A13), and the trigonometric equality

tan (A-B) = -tan A -tan B
I + tan A tan B'

that

O,(T + 1) 2 {O,+I (T) + O, I (T) - 6, tan 2 [ I,+l (T) - O,_ (T)]1. (A14)

We refer to Eq. (A 14) as the general phase diffusion equation.
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Appendix B
EQUILIBRIUM PHASE DISTRIBUTIONS

ANALYSIS

For a given initial phase distribution, Eq. (20), and a specified step-increase in the boundary phas-
ing at T = 0

aM(0) - mod2 7,.(ok - oM), (BR)

the CAM network may evolve either of two possible phase distributions (cf. Fig. 5). We presently
address the question of which of these two final phase distributions is ultimately established.

We have found by computer simulation that the parameter s in our analytically derived equili-
brium phase distribution, Eq. (19), can be determined by inspecting the phase distribution after just a
single delay time, T = 1. Only OM-,, one module removed from the point of disrupted excitation, has
changed from its initial value at this time. Defining the time gradient of phasing as

a,,r) - mod2 ,JO,(T) - O,(T - 1)), (B2)

we find that

aM_,l(1) - mod2 , {M.(1) oM- I(0)1{> , = - 1 (B3)

The meaning of Eq. (B3) is interpreted with the aid of Figs. B1 and B2. Assuming that the phase
distribution is given by Eq. (20) at time X < 0, we must determine whether OM-,(l) is greater or less
than OM-1(0). First, we note that

*on(0) = o,,(-1), n = 0, 1, 2, ... (M - 1), (B4)
and

O,,(1) =O,,(0), n =0, 1, 2,... (M - 2), (BW)

since the phase disturbance initiated at (n, -) = (M, 0) propagates at the rate of one module per unit
of normalized time. Comparing Fig. B1 and Fig. 5, we see that Fig. BI corresponds to an incipient
s = 0 phase distribution. Similarly, comparison with Fig. 5 shows that Fig. B2 corresponds to an inci-
pient s = 1 distribution.

Setting (n, T) = (M - 1, 0) in Eq. (4) we obtain

ej0 M1 (1) = NM-I (0) FMI [eiM(o) + ejoM-1 (o) (B6)

Multiplying both sides of Eq. (B6) by exp [-j0M_1 (0)] we obtain

eJaM-1(1) = NM-..I(0)FMI[eei Mmo) + eJAoMl ()], (B7)

where aM-,l(l) is defined by Eq. (B2) and the quantities AO,,(T) are defined by

AOn(T) O,,) - 0,,.- 1 (T). (B8)

From Eqs. (B4) and (B8)

AOM-1(0) = OM-,(-I) - OM_2(-1). (B9)

From Eqs. (B9) and (20),

AOMI (0) = A00. (BIO)
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n (1)

(M-1)

0 1 2 3 4 5 6 7 8 9

Fig. BI - Incipient S = 0 equilibrium phase distribution. Circle (0) denotes
value at 7 = 0. Cross (x) denotes value at r = 1. Triangle (A) denotes
values that are the same at r = 0 and T = 1.

a'. =I

Similarly, we can show from

(M-1)

i I I I I I n

0 1 2 3 4 5 6 7 8 9

Fig. B2 - Incipient S = I equilibrium phase distribution.
Symbols 0, x, and A as in Fig. BI.

Eqs. (5b), (B4), (B8), and (20) that

AOM(O) = A 00 + M(A0 - A0o). (B1II)

From Eqs. (RI) and (5b)

aM(O) = mod 2r(OH - OM) = M(A - A- 0)

Substituting Eqs. (I10) and (Bh I) into Eq. (B7), and making use also of Eq. (112), we obtain

ejiMl (I)I- NM-,(0) FM..._1[ej"Oej'M(o) + ecj"°o.

Equation (113) is given a phasor diagram representation in Fig. B3, for positive coupling (FM-I

(R132)

(B113)

> 0).

We see from Fig. B3 that a MI(1) < ST so long as

0 < aM(0) < (ST - 2A4O). (B 14)

In interpreting Eq. (B14) we recall that aM(O) is the change in edge phasing imposed by the phase-
shifter, as given by Eq. (R12). If we do not increase the edge phasing by too large an amount, Eq.

21
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Fig. B3 - Phasor diagram derived from Eq. (B13), assuming F > 0. The
S = 0 phase distribution (cf. Fig. 5) evolves when angle aM-,(O) < 7r,

i.e., for 0 < aM(O) < (ir - 2A~O).

(R14) will be satisfied and the s = 0 phase distribution will evolve after a period of time (cf. Fig. 5).
However, if the edge phasing is increased to such an extent that Eq. (R14) is not satisfied, we find
instead that the s = I phase distribution will ultimately evolve.

Figure B3 and the conclusions derived from it pertain to positive coupling (F > 0). The
corresponding phasor diagram for negative coupling (F < 0), also derived from Eq. (B13), is shown in
Fig. B4.

In general, the equilibrium phase distribution can be predicted from Eq. (19) and the following
set of rules for assigning a value to the parameter s.

For positively coupled modules (F > 0; 0 < Ad0 < iT/2),

[O, 0a< CM(O) <
S |1 , otherwise.

For negative coupling (F < 0; ir/ 2 < A00 < T),

O0, 0 < aM() <

S |1 , otherwise.

Fig. B4 - Phasor diagram derived from Eq. (B13), assuming F < 0.
Note that A00 > 90°. The S = 0 phase distribution (cf. Fig. 5)
evolves when am-l(1) < ir, i.e., for 0 < aM(O) < (3r - 2A~O).

(Or - 2A00)

(3ir - 2A0o)
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PHASING UP (s = 0 Phase Distributions)

By "phasing up" we mean the process of modifying the edge phasing to achieve a new equilibrium
phase gradient that is larger than the initial gradient, AO, > Af0 . Inspection of Fig. 5 shows that phas-
ing up corresponds to the establishment of an s = 0 phase distribution.

From Eqs. (19), (21), and (23) (assuming F> 0),

AO, = Ak00 + [aM(O)/M], .{17a)

subject to the requirement that

0 < aM(O) < ( - 2A~O), (BI7b)
where A00 is the initial phase gradient, AO,, is the new phase gradient, and aM(O) is the step-change in
edge phasing. According to Eq. (R17), the new phase gradient is proportional to the step-change in
edge phasing, aM(O), so long as aM(O) is not too large. While Eq. (B17) is applicable only to positively
coupled lattices (F > 0), an analogous formulation is readily derived for F < 0. The upper limit on
AO, established by Eq. (B17) is

AO0 < [A0o + (i- 2A~0 )/MI. (R18)

For example, we assume that

(A~O, M)= (60°, 9), (B19)

i.e., that we have an 8-module feed initially phased to 60° per module. If we step-increase the edge
phasing by just less than the upper limit indicated in Eq. (R17b), say,

aM(O) = 0.9 9(iT - 2A~O) = 59.4°, (B20)

the lattice will eventually settle into a new phase distribution

AO, = 60 ° + (59-4 0/9) = 66.6 °, (B21)

just less than the upper limit established by Eq. (B18), AO,, < 66.670. If we attempt to increase AO,
above 66.670 by step-increasing OM by an amount aM(O) > (or - 2Ao), the phase gradient decreases
rather than increases, as discussed below.

PHASING DOWN (s = 1 Phase Distributions)

By "phasing down" we mean the process of modifying the edge phase OM to achieve a new equili-
brium phase gradient that is smaller than the initial gradient, Ad,, < Ao0. Phasing down corresponds to
the evolution of an s = I phase distribution (cf. Fig. 5).

From Eqs. (19), (21), and (23) (assuming again that F> 0),

AO, = Ad0 - [27T - aM(0)]/M, (B22a)

subject to the requirement that

(T- 2A9O) < aM(O) < 2 T, (B22b)

where A0o, AD,, and aM(O) are defined as in Eq. (B17). The lower limit on AD,, established by
Eq. (R22) is

AO,, > [A0 - (iT + 2Ako)/M]. (B23)
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For example we assume (Aj0, M) = (600, 9), as in Eq. (B19), and that the edge phasing is
step-increased by

aM(O) = 1.01 (ir - 2Ato) = 60.6°. (B24)

We find from Eqs. (B19), (B22a), and (B24) that the lattice eventually establishes a uniform phase gra-
dient

AO, = 60 0 + (60.6 °-360 0)/9 = 26.73 , (B25i

just greater than the lower limit obtained from Eq. (B23), AG, > 26.670.

We have seen that step-increasing the edge phase OM by 59.4° increases the phase gradient from
60° per module to 66.60 per module (cf. Eqs. (B19), (B20), and (B2l)). A slightly larger edge phase
increase of 60.60 decreases the phase gradient from 600 per module to 270 per module (Eqs. (B24) and
(B25)).

PHASING LIMITS AND MULTISTEP PHASING PROCESSES

Starting from an initial phase gradient of A00 per module, it follows from Eqs. (B18) and (B23)
that there is no step-change in edge phase GM that will develop a phase gradient outside the range

[OO - (7r + 2A^<o)/M1 '< AG, < [A~0 + (ir - 2A 0 )/ML. (B26)

Assuming for example that (A/0, M) = (600, 9) we obtain

26.67° < AG, < 66.67°. (B27)

This apparent limitation on the range of AG, is actually readily overcome. A multistep process can be
used to sweep the phase gradient outside the range indicated by Eq. (B26).

Considering the phasing up process, for example, we generalize Eq. (B17) as follows:

n = AGni) + [agM't/M], (B28a)

subject to the requirement that

0 ( aM+1) < [ir - 2AGi'], (B28b)

where

AO (0) _ ,0, (B28c)

and where AO'i), i = 1, 2, ... , is the equilibrium phase gradient that evolves after the ith step-
increase in edge phasing, ak).

Continuing our previous example, we find from Eqs. (B28), (B19), (B20), and (B21) that

A =) 66.64 (B29)

A new phase gradient AO,(2 ) > AO(') may be established by initiating another step-increase in edge
phasing, so long as we observe the constraint imposed by Eq. (B28b). Choosing, for example,

a(2) = 0.99[7T - 2AO (1] = 46.33 , (B30)

we establish a new equilibrium phase gradient

A0 (1) = 66.6°+ (46.33 0/9) = 71.75°, (B31)

once the transient has decayed. The process may be continued, and ever-increasing phase gradients
thereby achieved.
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We obtain the multistep prescription for phasing down by generalizing Eq. (B22),

Oni+ ) = AGO "- [2Tr-a - +a1)I/M, (B32a)

subject to the requirement that

[iT - 2AG(i)] < a('+') • 2'T, (B32b)

where AO ') and a ('+') are defined as in Eq. (B28).

The maximum increase in the phase gradient when phasing up is computed from Eq. (B28) as

UO 0i+0)- AGi)] < [r - 2AG( ?]/M. (B33)

The maximum decrease in the phase gradient when phasing down is obtained from Eq. (B32) as

[AHOM- AO('+')] < [IT + 2A (/)]/M. (B34)

Comparing Eqs. (B33) and (B34) we see that phasing down the lattice generally requires fewer
steps than phasing up. Considering our previous example, Eq. :(B19), we see that the lattice can be
phased down (60" - 26.7") = 33.3" in a single step. By contrast, a single step-change in the edge phas-
ing can phase up the gradient by no more than (66.60 - 60°) = 6.6°.

An important conclusion derivable directly from Eq. (B33) is that as AOi) approaches 90" per
module, [AO("') - AG,(')] approaches zero, and no further increases in the phase gradient are
achievable. Thus, phase gradients 90" < AO, < 180" are unattainable for positively coupled lattices.

Our discussion following from Eq. (B17) pertains only to positively coupled lattices, F > 0. A
parallel formulation for F < 0 shows that

* phase gradients 0" K AO,, < 90" are unattainable with negatively coupled lattices, and

* negatively coupled lattices can be phased up over the range 90" ( AO,, C 180" much more rapidly
than they can be phased down.
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Appendix C
TRANSIENT ANALYSIS

In this appendix we derive an exact solution to the equation

On(7 + 1) = 2 [+(T) + H, (,r)], (Cl)

subject to the initial conditions

On(Tr) = nAt0,1 n = 1, 2, ........ M, 7- < O. (C2)

and boundary conditions

0O(T) = 0

OMW) = MAOn(o) T I 0. (C3)

Also, the equilibrium solution of Eq. (Cl) in the limit of infinite time is given by

oHn(-) = nAG,(-), (C4)

where AGn(oo) is a constant independent of n.

We begin our solution of Eq. (Cl) by transforming to a new phase variable tpn(T), subtracting the
known equilibrium value Gn(oo) from On(r),

On(T) G,(T) - On(o) = OO(T)- nAo,(o). (C5)

Thus, On(T) represents just the transient part of 0,(T),

lim p,,(T) = 0. (C6)

Applying Eq. (C5) to Eq. (Cl) we obtain an identical difference equation for On(T),

qi,(T + 1).= 2[YqJ+1 (T) + Onl(01] (C7)

The new boundary and initial conditions are obtained from Eqs. (C2), (C3), and (C5) as

o(') = kPM(T) = 0, (C8)

and

Ono 'Pn(0) = n[A0o- AO,,(-)], n = 1, 2, ... (M- 1). (C9)

The point of our variable transformation, Eq. (C5), is to provide us with homogeneous boundary con-
ditions, Eq. (C8), after which the initial value problem becomes solvable by separation of variables.

We look for solutions to Eq. (C7) of the form

n(T) = Zf(T). (CIO)

Substituting Eq. (CIO) into Eq. (C7) we obtain

Zf(T + 1) = I (Z,+l + Z,,I)f(T).
2

Thus,

f(T + I)/lf(T) = (Z,,+1 + Z,,-1)/2Zn A, (ClI)
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where the parameter X is dependent on neither T nor n. From Eq. (CI I)

f(T + I) = Xf(T). (C12)

Equation (C 12) is solved either by inspection or by standard difference equation methods to obtain

f(T) = f(O)XT, (C 13)

where f(0) is an undetermined constant.

Equation (C 11) also provides us with an algebraic eigenvalue equation for Z,,

-(Z,,+ 1 + Z,- 1) = XZ,,, n = 1, 2, ... (M - 1), (C14)
2

where, from Eqs. (C8) and (CIO),

Zo= ZM °0. (C15)

As may be verified by substitution, the eigenvalues Xk and corresponding eigenvectors Z7 (k) of Eq.
(C14) are

Xk = COS (kiT/M), (C 16)

and Z,(k) = (2/M)1 1 2 sin (irkn/M), (C 17)

for k = 1, 2, ... (M - 1). Eigenvectors (C17) satisfy the orthogonality condition

AZI(k)Zg)= = a 0 k I / (C18)n=1~~~~~~•1
The general solution of Eq. (C7) is obtained from Eqs. (CIO) and (C13) as

Al-I
)= I, Ak Zk) Ak (Cl9)

k-I

where the constants Ak must be determined from the initial conditions. We set r = 0 in Eq. (CI9),
multiply by Z4'), and sum over index n to obtain

Al q,,(0)Zn, ) = I Ak Z Zn (C20)

Thus, from Eqs. (C18) and (C20),
M-I

Ak = 0 nO Zn. (C2 1)
n-I

Substituting Eq. (C9) for to and Eq. (C17) for Zn(k) into Eq. (C21) we obtain
M-I

Ak = (2/M)'/ 2[A0,(.) -_A 0 z n sin (Irkn/M). (C22)
n-I

The summation in Eq. (C22) can be performed analytically, with the result

Ak = (M/2)1/2[A,(oo),-A,001](- )kcot(OTk/2M). (C23)

From Eqs. (C19), (C23), (C16), and (C17),
M-1

where k=I

qk) (T) = [An(-) - AkOI(l)kcott 'kJsin( Mn [|cos[ M |. (C25)
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Since

cos I -=cos I (M-k)TOr

we see from Eq. (C25) that 4 k)(T) has the same time dependence as qJMk)(r). This suggests writing
Eq. (C24) in the form

-() = [Mnk) (T) + 4, (M-k) (r)I (C26)
k=l

where [M/2] is the integer part of M/2,

((MI/2) ,M even(27
[M/2] =(M 0/2 M odd (C27)

We can show from Eqs. (C25) and (C26) that

IIT) = 2AG,(oo) - A¢0] Xos (_l)k|n(k /M) [cos (kiTrM)]+k', (C28)

where

- [I + (-Iv)n . (C29)
2

Equation (C28) is the exact solution of Eq. (Cl), subject to Eqs. (C2) and (C3), the initial conditions
and boundary conditions, respectively.
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Appendix D
UNEQUAL FORWARD AND BACKWARD COUPLING

FORMULATION

The equilibrium phase distribution of the CAM network is the solution of Eq. (13),

1
AO,,~= AO,, + E, tan - (AG,+, + AGO"), (Dl)

2 

where

2 |F + I| <<I' '' (D2)

We now define a quantity AO, that measures the degree to which the actual phase gradient AG, departs
from the ideal, i.e.,

A~n= AGOn - AG°. (D3)

From Eqs. (Dl) and (D3)

AO"+l = Ai,, + E, tan [AO I + 2 (AO"+. + Aon)Jd (D4)

where, from Eq. (19),

AOO = AO - s(21T/M), n = 1, 2, ... M. (D5)

If the CAM network is to be useful for exciting a phased array antenna, it must be true that

2 (AO,,+l + AO") << AG0 (06)

from which we can show that

tan IAO + 2(Ak,,+ 1 + AO.n)J tan AOn + I (A&,+ 1 + Ao ,) sec AG. (-D7)

From Eqs. (D4) and (D7),

AOn+l = AO, + E. tan AOn + I e,(AO,+1 + Ak,) sec2 AGOn° (D8)

Since development of an exact closed form solution to Eq. (D8) appears quite difficult, we pro-
pose an iterative solution,

AOnI) = n+') + e, tan A 0? + - En(A0(i), + Atk(')) sec2 AO . (D9)

In the limit of fabricationally perfect modules,

lim AG,,n = AG0n (D10)

The zero-order iterate AO(0°) is thus obtained from Eqs. (D3) and (D10)

AO n°) = 0. (Dll)

29



RICHARD A. STEINBERG

The first-order iterate follows from Eqs. (D9) and (DII),

A,&n+)l = An 1 l) + En tan AO0. (D12)

We simplify notation by dropping the superscript on AO'() and by setting s = 0 in Eq. (D5) to obtain

AAn+l = AO, + e, tan AOk. (D13)

The solution of Eq. (D13) is

AOkn K= -tan AO p, n= 1, 2, ... M, (D14)
p-n

as may be verified by back substitution into Eq. (D13). The constant K in Eq. (D14) is independent of
the module index n.

Since the values of 0 0 and OM are imposed by the phase control element (cf. Fig. 2), they are
independent of whether the modules are fabricationally perfect or imperfect; thus,

-0o 5 10

OM = G. (Di5)
Defining

rk G, - n°, (D16)

boundary conditions on On areobtained from Eqs. (DI5) and (D16),

0 = OM= °. (D17)

We impose these boundary conditions on Eq. (D14) to determine the value of K.

Toward determining the proper value of K we note that
M M

z Arn = , (Ok, -n-) = (rOM- 0 0) = 0, (D18)
n-I n-I

where the final equality in Eq. (D18)'follows from Eq. (D17). However, from Eq. (D14),
M M M

Aon =MK- tan AO 7 e p. (Dl9)
n-I . n-I p-n

Thus, from Eqs. (D18) and (Dl9)

K = M tan AO. (D20)
r =I p-r

Substituting Eq. (D20) into Eq. (D14) we obtain the general first-order approximate solution of
Eq. (D8),

IM M M;
AOk, = I S EP- Ep tan AO, n= 1, 2, ... M. (D21)

rM -Ip=r p-n P

We obtain the solution for On by noting that, analogous to Eq. (D18),
n

Y AOr = (rOn-, 0) = On, n = 1, 2, ... M. (D22)
r-l
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From Eqs. (D21) and (D22)

M M n M

on = r irep -p Etan AO, n = 1, 2, ... M. (D23)
,=1 p=r ,-1 p=r

Equation (D23) correctly reproduces the boundary condition at n = M, namely OM = 0. However, we
should not be worried that the boundary condition at n = 0 is not reproduced since Eq. (D22) (from
which Eq. (D23) was derived) is not valid for n = 0.

Finally, we should not be concerned that the quantity EM appearing in some of the above equa-
tions is not strictly defined, since terms in EM identically cancel from our final results, Eqs. (D21) and
(D23). Thus, Eqs. -(D21) and (D22) can each be written in a form in which EM does not appear:

I M-IM-I M-I

I r, p-r P Ej pin , n= 1, 2, ... (MA- I)
AO",8 I M-I M-I ,n = M

M Y. F. 4 tan AOIMr-I pir 

n I - j e,. tan AM I
m ,- p-r r- , Ap-r no 1, 2, ...... (M-I)

n A ° , n M.

The latter two equations evaluate identically to Eqs. (D21) and (D23), respectively. We generally
-prefer to work with Eqs. (D21) and (D23) for obvious reasons.

CONSTANT COUPLING RATIO

We presently assume that

e, =e, in -I, 2, ... (M-1), (D24)
i.e., we assume that all modules in the CAM network are identical, even though they are imperfect.
(We recall that, by definition, a perfect module is one for which F, = B,,, i.e., fI, = 0, n=
l, 2, . .. (M -l).)

It follows from Eq. (D24) that the summations appearing in Eq. (D21) are readily evaluated,

I I 1 2 I

e ,- (M - n + I). (D25)
p-n

Substituting Eq. (D25) into Eq. (D21),

A,- Arkt1l = ea,, n = 1, 2, M, (D26)

where
a,, _n - (M + 1)/2] tan AO. (D27)

We see from Eq. (D26) that the error in the intermodule phasing is minimum at the array center and
maximum at its edges.

In Fig. 11 we compare values predicted by Eq. (D26) with a computer solution of Eq. (4), for the
parameter values

(e, AO, M) = (10- 2 , 650, 9). (D28)
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We recall that Eq. (D26) is a first-order approximation. Later in this appendix we calculate a
second-order approximation that greatly reduces the discrepancy between the numerical and analytical
calculations evidenced in Fig. 11.

TAPERED COUPLING RATIO

Perhaps the simplest type of nonuniform network is the linear taper, for which

En = nef, n= 1, 2, ... (M- 1). (D29)

From Eqs. (D29) and (D13),

nl= Arn + ne I tan AO. (D30)

It can be shown that the summations appearing in Eq. (D21) evaluate as follows,

Al [ElI
I CP =f 12 [M(M + 1) - n(n - 1)] (D31)

p-n 2

and

M Al, = (E1/6) (M + 1) (2M + 1). (D32)
,_ I p-r

From Eqs. (D21), (D331), and (D32),

Ar, = I b, n = 1, 2, M, (D33)

where

b.-161 [3n(n - 1)-( 2 -1) tanArk. (D34)

To obtain Arn in degrees Eq. (D33) (like Eq. (D26)) must be multiplied by (18 0/7r).

We note that the value of n for which Eq. (D33) is equal to zero may be approximated as

no - 0.5 + 0.577 M, Ark,, = 0. (D35)

In Fig. Dl we compare values predicted by Eq. (D33) with' a computer solution of Eq. (4), for the
parameter values

(El. AX, M)= (0.0025, 65°, 9).

The predictions of the approximate analytic solution, Eq. (D33), appear quite close to the exact numer-
ical solution.

CONSTANT COUPLING RATIO: SECOND-ORDER APPROXIMATION

From Eqs. (D9) and (D24) we obtain

An2+) 1 = Arkn(2) + C tan A00 + 2 C(AO ") + Ark(,)) sec2 AGon (D36)

where AOk(), is the first-order approximation given by Eq. (D26). From Eqs. (D26) and (D27)

2 (A(} (+n 2 | tan AO. (D37)
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40

6° _ n

1 2 3 4 5 A 

-2° s

Fig. Dl - Equilibrium phase error for an 8-module feed with a linearly
tapered imperfection. Parameter values assumed are (el, AO, M) =
(0.0025, 65°, 9). Solid curve obtained by numerical solution of Eq. (4);
dashed curve obtained by first-order approximation, Eq. (D33). Quantity
A+" is defined only at integral values of n.

Substituting Eq. (D37) into Eq. (D36),

Ark,+1 = Ark,, + e tan AOk + e2In - 2| sec2 AX tan Ai\ (D38)

where we simplify notation by dropping the superscript from AO (2) and by substituting Ar for AO °
(i.e., setting s = 0 in Eq. (D5)). Equation (D38) may be written as

AO,+l = An + E tan Ar + nEl tan AOk, (D39)

where, by definition,

"E-ell[- I eAM sec 2 AriJ

Et-E 2 sec2 AOk. (D40)

The solution of Eq. (D39) may be written by superposing the solutions of Eqs. (D13). and (D30).
Thus, from Eqs. (D26) and (D33),

AOk , AO (2) = Ea,, + Elb,,, (D41)

where an and b, are given by Eqs. (D27) and (D34), respectively. We can show from Eqs. (D41) and
(D26) that

[An 2 ) - Arnl)J = 2 I[n - (M + l)/22 -(M 2 - )/12} 2 sec2 AX tan AO. (D42)

As shown in Fig. 11, the second-order approximation brings our analytical results much closer to the
exact numerical solution of Eq. (4).

RANDOM COUPLING

Rather than take e, as a known function of n (e.g., Eqs. (D24) and (D29)), we now assume that
the coupling coefficients F,, and Bn are independent, identically distributed, random variables. The
quantity e, is thus also a random variable as a consequence of Eq. (D2).
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We denote the mean value and variance of a random variable Xas 1,, and crX, respectively. Thus,
by assumption, IUF = AB and 0.F = CrB, while bf and os are independent of the module index n,

AE= E(E,,, n = 1, 2, ... (M-I)

z(f2 = E I(-En-,u2 n = 1, 2, ... (M- 1). (D43)

The statistical expectation operator is denoted as E[-] in Eq. (D43).

Since a simple relationship exists between Cen, F, and B,, Eq. (D2), we might expect simple rela-
tionships to exist between their mean values and variances. These relationships are derived as Eqs.
(Ell) to (EI5).

To simplify our notation we define

Aun E(,&O,),

P,2 =E[AO I), (D44)

2 ((Ak. _- n)21 = (p.? - ',42).

An expression for /n, the mean phase error, is obtained by applying the expectation operator to Eq.
(D21). Since the expectation operator commutes with the summation operations we find

I M M- M

A n = M ,: IS 'Pz:Atan &O. (D45)
1A r-I p-r p-n 

Since the random variables e, are identically distributed, their mean values ja, are' all identical (Eq.
(D43)). Thus, Eq. (D45),evaluates precisely as for the constant coupling ratio problem, Eq. (D24).
As a simple adaptation of Eq. (D26) we find that

i,= ,L, n - (M + 1)/2] tan Ar, n = 1, 2, ... (MA- 1). (D46)

From Eqs. (D46) and (E14)

= 10- 4A2 [n - (M + 1)/2] tan AO, (D47)

where A is the percentage fabricational accuracy, as defined by Eq. (E13).

For example, assuming that

(A, M, AO) = (1%, 9, 45°), (D48)

we find the maximum expected phase error is just

max n,, = /,M = 4 x I0-4 (rad) = 0.023°. (D49)
n

Thus the mean phase increment is very nearly a constant,

LE{AGJ = An + Ark-Ark. (D50)

From Eq. (D50)

EL0,J, nAO. (D5I)

It is of interest to determine the extent to which we may expect the phase distribution AGn to
deviate from its mean, Eq. (D50). For this purpose we need to evaluate the second-order statistic
E[AG'I - EILAG,]2. First, we note that

E[AO,2} = ELIArk) = P,?, (D52)

as a consequence of the fact that

AGn = Akn + A+-. (D53)

34



NRL REPORT 8492

We recall that Ark in Eq. (D53) is deterministic and is determined by the boundary condition, Eq. (5);
i.e., AO is determined by the phase control element in Fig. 2.

From Eq. (D21),

P,2 = tan2 AO * pn (D54)

where

Pn El E M ] 1 p p-' 1 k Sf (D55)
r=l p-r p=n s= ks k=n

Four terms are obtained when the multiplication inside the expectation operator in Eq. (D55) is per-
formed. Commuting the expectation operator with the summations, we find from Eq. (D55) that

P= L + Rn-AMl-'L (D56)
where

IM M M M
L- M2 L ' LI I E(EPJk}, (D57)

r-I s-I p-r k-s

MM
Rn- M I E[ep'Ek) (1358)

p-n k-n

Mn-- M i j{ z E[CPEkIJ (D59)

and

En- M zz E[Epfkd (D360)

Following our assumption that (F, B,,) are statistically independent of (Fm, Bn), for n ;• m, we find
that

2 lr2, p= k
E k[Ep=. = pek = to, p k. (D61)

With the definition

M M
Suv 6 Z 8 pk' {D62)

p-u k-v

it follows that Eqs. (D57) to (D60) may be written as

L = 1 MM (D63)
M -ISr-"

Rn = Sn , (D464)
M

M=MI S, ns (D365)

and

I M

M r=l (D66)

It follows from Eq. (D62) that SU = Svu Thus, from Eqs. (D65) and (D66), we see that Mn = E,
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It can be shown from Eq. (D62) that

Suv,= ors[(M + )- max(u, v)], (D67)

where max(u, v) denotes the larger of u and v,

max(U, V) = UV V (D68)

It can be shown from Eqs. (D63) to (D67) that

L = f 6 M-'(M + 1)(2M + 1), (D69)

Rn = -4(M + I-n), (D70)
and

Mn = En =c 2 1 M-'IM(M+ 1)- n( -1). (D71)

Collecting terms, it follows from Eqs. (D54), (D56), (D69), (D70), and (D71), that

p - E [(Ar )2] = (o 2 tan2 AO)(1 + M.)I IM + -- n + n2(M + 1)-Y.I (D72)

We complete the square on n in Eq. (D72), to obtain

Pn = 0a, tan AO| 1 12 M. -M2 + M~'[n -(M + 0)/212 (D73)

Equation (D73) clearly displays the expected symmetry about n = (M + 1)/2.

From Eqs. (D73) and (EI5), and multiplying by (180/7), we obtain

,Pn = 24 IA tan Ark 1 M(1 -M 2 ) + M~l[n - (M + l)/2]2 1 degrees. (D74)
1.234 j12

Multiplying Eq. (D47) by (180/10),

1 A2 tan AOk[n - (M + 1)/2], degrees. (D75)

Froms Eqs. (D44), (D74), and (D75)

lr2 = (pn?- ~2) == p"2 (D376)

so long as

M A2 << 2 x 104. (D77)

Assuming that Eq. (D77) is valid, and also that

-M-2 << I, (D78)

we find from Eqs. (D74), (D76), (D77), and (D78) that

a,=- {L[(AE ,) 2]- [E(Akn)]2}112 (D79)

0-n = 0.234 A tan ArM1/ 2{1 + 12M- 2 [in - (M + 1)/2]2)1/2, degrees, n = 1, 2, ... M. (D80)

We recall that A in Eq. (D80) is the percentage fabricational accuracy, defined by Eq. (E13); (M - I)
is the number of modules; MAO is the phase shift established by the phase control element in Fig. 2; n
is the module index; 0-n is the root-mean-square (RMS) deviation of AO, = On - On-, from its desired
value, AGn = Ark.
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It follows from Eq. (D80) that the RMS phase error is minimum at the center of the array and
maximum at its edges. From Eq. (D80)

min -,, = 0.234 A tan Ar . M/ 2 , degrees, (D81)
n

while

max -n , 2(1 - 0.75MAI)(min a,), degrees. (D82)
n - f

For the example of Eq. (D48) we find for the minimum and maximum RMS phase errors,

min o-, = -5 = 0.70" (D83)
n

and

max -, =a-1 =- -9 = 1.29". (D84)
n
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Appendix E
RELATIONSHIPS BETWEEN COUPLING STATISTICS

AND POWER SPLITTER ACCURACY

Our objective in this appendix is to derive expressions for the mean and variance of e,,,

En | _nB | n (El)

in terms of the mean and variance of the power split coefficients F, and B,.

As a matter of notation, the expectation operator is denoted as EL]. The mean and variance of
random variable X are denoted as /i, and r-x, respectively. We assume that random variables F, and
B, are independent and identically distributed. Thus

ARF A yB

OF a-B, (E2)
for all values of n.

Our results are obtained as a special case of a theorem appearing on p. 141 of Ref. El. We state
the general form of the theorem first.

If the random variable Z is a function of the two random variables Fand B,

Z= H(F, B), (ES)

the mean and variance of Z may be approximated by the following:

A z H(AF, MB) + I [(OF'FH) a-F + (QB H) al] (E4)

a 2 - (aH) 2 crF + (88H)2 ab (ES)

The partial derivatives aF = 8F, etc., in Eqs. (E4) and (E5) are evaluated at (F, B) = (F, MB).

For the special case

Z= F- B-', (E6)
and making use of Eq. (E2), we find from Eqs. (E4) and (ES) that

A - I1+ (a-F/MF)2 , (E7)

and

(_2 2(a-F/ F) 2 . (E8)

However, from Eqs. (El) and (E6)

e = Az - 1, (E9)

and

r2 z2. (EI0)
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From Eqs. (E7) through (E10),

te - (C F/l F) 2 , (El I)

and

Cas = XV' (O'FIAF)- (E 12)

If we define the fabricational accuracy A as

A = 100 (GF/IF) (percent), (E13)

Eqs. (E I) and (E12) become

104 A2, (E14)

and

ae- = v2 x 10-2A. (E15)

For fabricational accuracies A - 1%, we see from Eqs. (E14) and (ElW) that a-e is about two orders of
magnitude larger than i,£. Thus, we are often able to ignore I,, regarding e as a zero-mean random
variable.

LEPEkJ = ae8 Ppk= lo p ;•f k. (D61)
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Appendix F
MODULES WITH SELF-COUPLING

We can show that the transient phase distribution of modules with self-coupling, Fig. 12, evolves
according to the equation

ejin(T+0) = Nn (r) [ejon(r) + BeJOn+1(T) + FejOn-()], (Fl)

analogous to Eq. (4). We simplify the analysis in the remainder of this appendix by assuming equal
forward- and backward-coupling,

F= B. (F2)

With the definitions

AGn(r) = On(T) - OnGl(T), (F3)

*~~~~~~~~~~~~~~~~N ,NN(T), (174)

a G,,(T + 1) - G,(T), (F5)

A --2[/AGn+ 1(T) + AGn(T)], (F6)

S -[IAGn+l(T) - An(T)], (F7)

Eq. (Fl) may be written as

e} = N(l + 2Fe' cos A). (F8)

Taking the real and imaginary parts of Eq. (F8) we obtain

sin a = 2NF cos A sin S, (F9)

and

cos a = N(l + 2F cos A cos 5). (F10)

Dividing Eq. (F9) by Eq. (F10),

tan a 2F cos A sin S. (Fll)
II + 2F cos A cos SI

Inspection of numerous numerical solutions of Eq. (Fl) shows that the spatial/temporal develop-
ment of the phase distribution proceeds gradually after an initial short period of rapid changes. Thus,

laI = IG,(T + 1) - On(T)I << 1, T >> 1, (F12)

and

Isl = 2lA0n+G () - An,(T)I << 1, T >> 1. (F13)
2

From Eqs. (F12) and (FS),

tan a - a = Gn,(T + 1) - 0,(T) (F14)
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From Eqs. (F13) and (F7),

sin S : S = 2 [Ao,+ 1(T) - AG"0)], (F15)

and

cos S 1. (F16)

From Eqs. (F13) and (F6),

A = - [AO +1 (T) + AO,(T)] -O 6-o(T). (F17)
2 '

Substituting Eqs. (F14) through (F17) into Eq. (FII) we obtain
to (' +1) O'(r I IF cos AO,,O [ AO "+I () - Ao"(T)]. (1F18)

Io,,& + 1) - on(T)] I |I + 2F cos AO n

Using our definition for AOn(T), Eq. (F3), Eq. (F18) may be written as

[On(7 + I) - On()] = 2C (T)[n+l (T) - 20n() + Gn.1 (T)I (F19)

where

C (T) = |I + 2 F-I sec AOn (T)I. (F20)

Equation (Fl9) has the form of a l-D heat flow equation in which the time and space derivatives have
been replaced by finite differences. However, the solution of Eq. (F19) is complicated by the fact that
the "diffusivity" CQT) is a function both of space and of time. Further simplification is achieved by
remembering that when T >> I the quantities AO,(T) approach their equilibrium values,

lim AOn(T) = AO, (F21)

where we simplify notation by setting s = 0 in Eq. (19). From Eqs. (F19), (F20), and (F21)

-n(T + 1) I C[O,+Ir(T) + On_.(01)] + (I - C)On(T), (F22)

where

C= |I + I2 F- sec AOkj. (F23)

In the limit F- o we see that C -1, and Eq. (F22) reduces as expected to Eq. (AIO).. More gen-
erally, we solve Eq. (F22) by the same separation-of-variables method we previously used to solve Eq.
(A10), with the result

M- In (T) = A AZnk)g T (F24)
k-I

where

lk = Ckk + (1 - C) (F25)

and where qtt 1 , Xk and Z4 (k) are given by Eqs. (C5), (C16), and (C17). Again, from Eqs. (F23) and
(F25)

tim I-k = Xk, (F26)

and Eq. (F24) reduces to our previous result, Eq. (C19).
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Assuming that the initial phase distribution is given by Eq. (C2) (cf. also Fig. 5) the expansion
coefficients Ak in Eq. (F24) are once again given by Eq. (C23). Analogous to Eqs. (C24) and (C25) we
now obtain

M-I
Y~~~n~ WT (T), (F27)

where

qnk)(r) = [I k (oo) - Ao](-l)kcot (2M| sin I Mrkn [1 - 2C sin2 (2M|]J* (F28)

Equation (F27) is the exact solution of the phase-diffusion equation, Eq. (F22). However, Eq. (F22) is
itself only an approximation to Eq. (Fl), valid in the limit T >> 1. Thus, even if all (M - 1) terms
are kept in our expansion for igt(T) Eq. (F27), the result is still just an approximation. By contrast,
Eq. (C24) provides the exact solution to Eq. (Cl).

Another distinction between Eqs. (F27) and (C24) is in the eigenvalue spectrum that determines
the time-dependence of the space/time modes, k)(T). Previously, we found that the k-mode was
degenerate with the (M - k)-mode, i.e., that

10kI = IXM-kl (F29)

Consequently, it was necessary to retain the highly oscillatory (M - )-mode in developing an approxi-
mation to Eq. (C24). However, we now find that self-coupling has broken the degeneracy,

jLkI > IAM-kl (F30)

and that we need retain only the slowly varying k = 1 term in developing an approximation to Eq.
(F27). Assuming that (7,/M) << 1,

(T) = O,(oo) - (2M/ir)[AO#(oo) - A0oI sin (nir/M)ee (F31)

analogous to Eq. (33). However, we now have a different value for the settling time,

TS= Tsl + 2 F- sec A0|J (F32)

where rs =- M2 /5 is the settling time for modules without self-coupling, Eq. (34). In general, when F
> 0, stable equilibrium phase distributions must have 0 < AO < ir/ 2; when F < 0, we have 7r/2 <
AO < ff. It then follows from Eq. (F32) that

Ts > TS, (F33)
always; i.e., modules without self-coupling settle faster than modules with self-coupling.

Instead of Eq. (35) we now obtain
t/r T

Abn(T) = AO,(-) - 2 [AUO(oo) - AO0] Cos (nfflM) e s, (F34)

where Ts is once again given by Eq. (F32). Comparing the n-dependence of Eqs. (35) and (F34) we
see-that Eq. (F34) is missing the highly oscillatory factor A that represents the contribution of qk, M-)
to Eq. (35).

We have compared the one-mode approximation, Eq. (F34), with some exact computer solutions
to Eq. (Fl). In performing these calculations we assume that

(M, A~0 , aM(O)) = (9, 60°, 450) (F35)

as for Eq. (36) and Fig. 8. Figure Fl presents a comparison between the analytic and numerically
derived phase distributions as a function of the module index n for two particular values of time
(T = 70 and T = 100).
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Fig. FI - Phase distribution for a self-coupled 8-module feed at
two values of time (r - 70 and T - 100). Assumed parameter

- o , values are (M, Ago, aM(O), F) = (9, 600, 450, 1). Phase values
-{ -connected by solid lines obtained by numerical solution of Eq.

A/ (Fl); values connected by dashed lines obtained by one-mode
approximation, Eq. (F34). In the infinite-time limit a uniform

64° /: phase gradient is established, AO,,(-) = AO = 650.
64_ 

Compared with Fig. 8 we note from Fig. Fl that the phase distribution for self-coupled modules
evolves much more slowly with time and is spatially smoother than the phase distribution of modules
that lack self-coupling.
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